
GameToSpeech 2020.1 prototype report
David Libeau

October 22, 2020

1 Introduction
A minimal prototype has been created in order to demonstrate a possible way of
exporting data out of a game for generating audio description. GameToSpeech
is the brand name of the technological side of the PhD project of David Libeau.
This PhD aims to study a method for generating real-time audio description for
live streamed gaming [1]. This report describes the key components of the first
prototype of GameToSpeech.

2 Project architecture
GameToSpeech is built like a basic client–server model. The streamer and the
viewer could be considered as clients and the server is GameToSpeech. The
server role is to dispatch the streamer’s data to the viewers clients. The view-
ers cannot send back information to the streamer through the GameToSpeech
server. In a way, we can also consider the GameToSpeech server as a router.

Streamer
game

Game-
ToSpeech

server

Viewer
client

The GameToSpeech server is coded in JavaScript thanks to NodeJS. It trans-
mit data to the viewer client through WebSocket. It deploy an API where the
streamer game can send data through HTTP.

3 Sending data out of a Unity game
In this prototype, the streamer game is simulate thanks to a Unity project build
upon the free 3D Game Kit asset [2]. In this Unity project, a C script has been
added providing a mean to export data out of the game.

1

3.1 The Unity script
The main GameToSpeech script (named GameToSpeechManager in Unity) is
made of a simple sendToServer function.

This method is accepting two parameters. The first one is the category,
needed in order to classify the data, and the second is the value, the data
content itself in JSON format. The sendToServer function is sending this
data to the GameToSpeech server by doing a HTTP GET on the address
https://api.gametospeech.com/ with a route build with the first parent as the
game ID and the second parent as the channel. The channel value is identifying
the streamer so it needs to be unique to the streamer. The game ID is, at the
opposite, identify the game played by the streamer. In this prototype the game
ID was unity and the channel david.

You can find below the main GameToSpeech Unity script’s code.

1 using System.Collections;
2 using System.Collections.Generic;
3 using System.Text;
4 using UnityEngine;
5 using UnityEngine.Networking;
6

7 public class GameToSpeechManager : MonoBehaviour
8 {
9

10 public string gameId;
11 public string channel;
12

13 public void sendToServer(string category, string data)
14 {
15 StartCoroutine(serverSend(category, data));
16 }
17

18 IEnumerator serverSend(string category, string data){
19 string json = "{\"category\":\""+category+"\",\"value\":\""+data+"\"}";
20 Debug.Log(json);
21 UnityWebRequest www = UnityWebRequest.Get("http://api.gametospeech.com/"+
22 gameId+"/"+channel+ "/?data="+json);
23 yield return www.SendWebRequest();
24

25 if(www.isNetworkError || www.isHttpError) {
26 Debug.Log(www.error);
27 }
28 else {
29 Debug.Log("OK");
30 }
31 }
32 }

2

3.2 Using the script
The GameToSpeechManager itself is useless if any other script is calling the
sendToServer function.

First, in the game a GameToSpeech object has to be created with the Ga-
meToSpeechManager script attached. Next, in other game’s scripts, the send-
ToServer function will be callable with a simple line.

Here is an example where the game is sending the value of the variable text
as a dialog to the server.

1 GameObject.Find("GameToSpeech").GetComponent<GameToSpeechManager>()
2 .sendToServer("dialog", text);

4 The GameToSpeech server
As previously mentioned, the server is coded in Javascript thanks to NodeJS.

The script has two main routes. The game’s API and the page for the end-
user. The API endpoint is build with the game ID and channel name. For
this prototype, it is only working with unity as game ID. When the script is
receiving data, it tries to decode as it is JSON. Then it sends the data on the
socket with the namespace of the channel name. Thanks to that only the users
connected to that namespace will receive the data. The script can also initialize
the socket if it detects that it was not been created before.

The client user will have to connect to the /listen route with the channel
name as second parent in the path. When he/she will load this url, an HTML
page will show up with minimal content, but with a Javascript script run on
the browser. This script will try to connect to the socket with the appropriate
namespace in order to receive data of the right streamer. When data is received,
the browser will use an internal text-to-speech software to transform the data
value into speech.

Here is a sample of the NodeJS script run on the server. This script is using
ExpressJS and SocketIO modules.

1 //the init of express and socket.io is not shown here
2

3 //init channel
4 var channels = {};
5 function initChannel(channelName){
6 channels[channelName] = {};
7 channels[channelName]['socket'] = io.of('/'+channelName);
8 channels[channelName]['socket'].on('connection', socket => {
9 console.log('Socket connected on channel '+channelName);

10 });
11 }

3

12 //API (receiving data from the game)
13 app.use('/:gameId/:channel',
14 function (req, res, next) {
15 if (req.params.gameId == 'unity') {
16 console.log(req.params);
17 var data = JSON.parse(req.query.data);
18 console.log(data);
19

20 if(!channels[req.params.channel]){
21 initChannel(req.params.channel);
22 }
23 channels[req.params.channel]['socket'].emit('message', data);
24

25 res.send('OK');
26 } else {
27 next();
28 }
29 });
30

31 //render and serv the client HTML page
32 app.get('/listen/:channel', (req, res) => {
33 res.render('listen', {
34 channel: req.params.channel
35 });
36 });

The code below is a sample of the Javascript script run on the client browser.

1 //the HTML page is not shown here
2

3 var socket = io('/<%= channel %>');
4 socket.on('connect', () => {
5 console.log('connect');
6 document.getElementById('status').innerHTML = 'You are connected to channel <%= channel %>.';
7 });
8 socket.on('disconnect', () => {
9 console.log('disconnect');

10 document.getElementById('status').innerHTML = 'You have been disconected.';
11 });
12 socket.on('message', data => {
13 console.log(data);
14 switch (data.category) {
15 case 'dialog':
16 speak(data.value, 'Samantha');
17 break;
18 case 'health':
19 speak(data.value + " health points", 'Alex');
20 break;
21 }
22 });

4

5 Conclusion
This first working prototype is very simple. It only transmit Unity game’s data
to an client web browser which automatically transform it into speech. This is a
basic audio description proof of concept which need improvements and further
studies.

You can find the complete source code at :

• https://framagit.org/DavidLibeau/gametospeech-server

• https://framagit.org/DavidLibeau/gametospeech-unity

If you cannot install and run the whole project, several demo videos are
available upon request.

References
[1] David Libeau. Generating real-time audio description for live streamed

gaming. 2020. url: https : / / www . researchgate . net / publication /
342051779_Generating_real- time_audio_description_for_live_
streamed_gaming.

[2] July 2020. url: https://assetstore.unity.com/packages/templates/
tutorials/3d-game-kit-115747.

5

https://framagit.org/DavidLibeau/gametospeech-server
https://framagit.org/DavidLibeau/gametospeech-unity
https://www.researchgate.net/publication/342051779_Generating_real-time_audio_description_for_live_streamed_gaming
https://www.researchgate.net/publication/342051779_Generating_real-time_audio_description_for_live_streamed_gaming
https://www.researchgate.net/publication/342051779_Generating_real-time_audio_description_for_live_streamed_gaming
https://assetstore.unity.com/packages/templates/tutorials/3d-game-kit-115747
https://assetstore.unity.com/packages/templates/tutorials/3d-game-kit-115747

	Introduction
	Project architecture
	Sending data out of a Unity game
	The Unity script
	Using the script

	The GameToSpeech server
	Conclusion
	References

